INDIGO - DataCloud

Large-Scale Data Analytics Workflow Support for Climate Change Experiments

S. Fiore, C. Doutriaux, D. Palazzo, A. D'Anca, Z. Shaeen, D. Elia, J. Boutte, V. Anantharaj, D. N. Williams, G. Aloisio

INDIGO-DataCloud

- An H2020 project approved in January 2015 in the EINFRA-1-2014 call
 - 11.1M€, 30 months (from April 2015 to September 2017)
- Who: 26 European partners in 11 European countries
 - Coordination by the Italian National Institute for Nuclear Physics (INFN)
 - Including developers of distributed software, industrial partners, research institutes, universities, e-infrastructures
- What: develop an open source Cloud platform for computing and data ("DataCloud") tailored to science.
- For: multi-disciplinary scientific communities
 - E.g. structural biology, earth science, physics, bioinformatics, cultural heritage, astrophysics, life science, climatology
- Where: deployable on hybrid (public or private) Cloud infrastructures
 - INDIGO = INtegrating Distributed data Infrastructures for Global ExplOitation
- Why: answer to the technological needs of scientists seeking to easily exploit distributed Cloud/Grid compute and data resources.

INDIGO & the Climate Model Intercomparison Data Analysis case study

- INDIGO DataClou
- The proposed case study is mainly related to the climate change community
- It is directly connected to the Coupled Model Intercomparison Project (CMIP) and to the Earth System Grid Federation (ESGF) infrastructure
- A EU/US testbed has been setup at CMCC, LLNL, ORNL and PSNC to demonstrate the feasibility of the approach and provide real feedback to end users
- Preliminary results have been presented by Valentine G. Anantharaj
 (ORNL) at the IEEE Big data 2016 conference this week
 - S. Fiore et al, "Distributed and cloud-based multi-model analytics experiments on large volumes of climate change data in the Earth System Grid Federation eco-system", IEEE Big Data Conference 2016, December 5-8, 2016, Washington [to appear].

The context of the case study: ESGF and the CMIP5 data archive

Image courtesy: Dean N. Williams (LLNL)

Requirements analysis for the climate change case study

	ENES	,	Deployment of		ng l		edicated	Easy to deplo		More flexibil					
		ENES#	Isolatio deploy		Com	puting	С	Currently users share the		Unavailable feature			_	nising side-effects ployments are	
	ENES# 11			Storage / PaaS Service		C The system uses Thredds for managing catalogues/meta data, Solr index for indexing datasets		Available		Keep feature		the reference data. when exhausting pabilities of one tor when combining ing of different data e deployed on different		he w"	
_	ENES# 12			curity / aS rvice	iden Ope med Myp are		ntity based on senID chanism. proxy servers		ing only and		it should be extended to big data analysis facilities for running intercomparison experiments.		easy to deploy a self- e and auto-scalable tics cluster with all the id the console /		
	ENES# 13	restricted F		Security / PaaS Service	acc por scie	Anonym access to portals a scientific gateway	o web and	Server-side approach should provide interactive processing capabilities		Specific deployment with limited data analysis functionalities could serve for demo, training, dissemination.		ninistration I. of papers and [for provenance and :y). Marketplace	to		
	ENES# 14	Interactive processing	/ P	mputing laaS rvice	С	Interactive processing is available client- side				To be made available in a distributed, server-side processing/analysis scenario. Software like Ophidia and IPyth deal with interactive data analys aspects.		nario. Ind IPython			h
	ENES# 15	Easy-to-use environment		curity/Co outing	M/ 0	Set of to data and processi	ilysis,	_	entific ays tailoring nalytics	complex	nalytics Gatewa x experiments/v h resolution dat	workflows	onsidered Mandatory, whe lasticity can be considered ptional.		

High-level view of the multi-model experiment on Precipitation trend analysis

INDIGO - DataCloud Single model precipitation trend analysis SUBSETTING [time] 2006...2010 [time] percentile Multi-1850...1859 model statistical analysis SUBSETTING 2006...2010 SUBSETTING SUBSETTING 1850...1859 SUBSETTING APPLY 2006...2010 [time] percenti INTERCUBE SUBSETTING 6

Climate Model Intercomparison Data Analysis case study challenges & issues

- CMIP* experiments provide input for multi-model analytics experiments (e.g. trend analysis)
 - Input data from multiple models needed
 - Data distribution inherent in the infrastructure
 - Data download is a big barrier for end-users (download can take from several days to weeks!)
 - Current infrastructure mainly for data sharing
 - Data analysis mainly performed using client-side approaches
 - Complexity of the data analysis needs more robust end-to-end support

The current scientific workflow in ESGF (client-side)

The paradigm shift implemented in INDIGO (server-side)

Architectural solution Running the multi-model experiment

- Distributed experiments for climate data analysis
- Server-side processing
- Two-level workflow strategy to orchestrate multi-site experiments
- Three-level of parallelism
 - Inter-workflow, intraworkflow, intra-task
- Access through Kepler GUI
- INDIGO solutions: Kepler, FGEngine, Ophidia, INDIGO PaaS
- INDIGO complements, extends and interoperates with the ESGF stack

Legend: legacy components in green, INDIGO components in orange, external components in yellow

Running the multi-model experiment

Application-domain oriented

- Strong requirements elicitation/validation
- Prototype running on a real testbed involving 3 ESGF sites + PSNC
- Integration of tools widely used by the community (UV-CDAT data viz.)
- Integrates multiple INDIGO components (FGEngine, Kepler, Ophidia)
 - Planned IAM, Orchestrator, CLUES, IM
- Potential impact: very high
- We expect the time-to-solution for the multi-model experiment can go down from **weeks** to **hours**!

Architectural solution Flexible and dynamic deployment

- Dynamic instantiation of Ophidia and Kepler WfMS
- Automated deployment through TOSCA document
- Data locality key due to the large amount of data
- Interoperability with ESGF
- Integration of largely adopted community-based tools
 - UV-CDAT viz tool
 - OPeNDAP/THREDDS (publication services)

Legend: legacy components in green, INDIGO components in orange, external components in yellow

Flexible and dynamic deployment

Platform-as-a-Service level

- Dynamic deployment of Ophidia through the INDIGO PaaS layer
- Based on ansible roles and TOSCA document
- Run through the Command Line Interface

Dynamic and flexible deployment of an Ophidia cluster

- integrates multiple INDIGO components (IAM, CLUES, IM, Orchestrator, Ophidia)
- automates and makes easy the deployment of an Ophidia cluster
 - Time-to-solution (deployment/setup) from 1-2 days to less than 1 hour!
- enables the implementation of more "isolated" scenarios, where resources are deployed on demand on an experiment-basis

Added value and Innovation

Added Value

- Paradigm shift from client- to server-side
- Intrinsic data movement reduction
- Lightweight end-user setup
- Re-usability of data, final/intermediate products, workflows, etc.
- Complements, extends and interoperates with the ESGF stack
- Provisioning of a "new and easy to use tool" for scientists
- Drastic time-to-solution reduction

Innovation

 provisioning of a core infrastructural piece (based on big data and cloud technologies) enabling large-scale data analysis and strongly needed in the current climate research ecosystem

Exploitation: ESGF & RDA

Research Data Alliance

- Involvement into the Array-Database Assessment WG
- **RDA application** with the aim of providing a *provenance-aware analytics ecosystem* (ongoing evaluation November 15, 2016)

Earth System Grid Federation

- Involvement into several ESGF Working Groups
- Interaction with climate scientists from different ESGF sites
- Testbed across EU/US involving 3 ESGF sites
- Add new ESGF sites to the testbed
- Goal: increase exploitation and users engagement!
- If you want to join the testbed, please contact us (<u>sandro.fiore@cmcc.it</u>)

Dissemination events

- EGU 2015 (12-17 April 2015, Vienna, Austria)
- RDA Sixth Plenary Meeting (23-25 September 2015, Paris, France)
- EOScience2.0 (12-14 October 2015, Frascati, Italy)
- ESGF F2F Conference 2015 (7-11 December 2015, S. Francisco, CA, USA)
- AGU2015 Conference (14-18 December 2015, S. Francisco, CA, USA)
- Ophidia PlayDay (29 April 2016, Bologna, Italy)
- Invited presentation at LLNL (23 May 2016, Livermore, CA, USA)
- Invited presentation at ORNL (26 May 2016, Oak Ridge, TN, USA)
- CMCC Annual Meeting (30-31 May 2016, Lecce)
- Big Data and Extreme scale Computing (15-17 June 2016, Frankfurt, Germany)
- **DI4R** (28-30 September 2016, Krakow, Poland)
- ENES Community Meeting Reading 2016 (25-27 October 2016, Reading, UK)
- ESGF F2F 2016 Conference (Washington, December 6-9, 2016)

Thank you